

PRE-FIL MCF MQF

Cella piana in fibra sintetica

Descrizione

Il media filtrante (pannello singolo per P = 24 mm, pannello doppio per P = 48 mm) è protetto da rete metallica da ambo i lati per garantire la consistenza del pacco.

Cella filtrante piana in fibra sintetica:

- MCF: classe ISO Coarse 50% secondo ISO 16890 (ex G3 EN 779:2012)
- MQF: classe ISO Coarse 55% secondo ISO 16890 (ex G4 EN 779:2012)

Esecuzioni speciali

- MCF-TRX, MQF-TRX: telaio e reti in acciaio inox AISI 304
- MCF-TRA, MQF-TRA: telaio e reti in alluminio

Prodotti correlati

- MECM: controtelaio modulare serie FRAM-FLO
- **GFX-QF:** griglia portafiltro serie BIOMODULO (sp. 24 mm)

Materiali e Finitura

Telaio in lamiera d'acciaio zincata. Reti di protezione infilo d'acciaio zincato elettrosaldato.

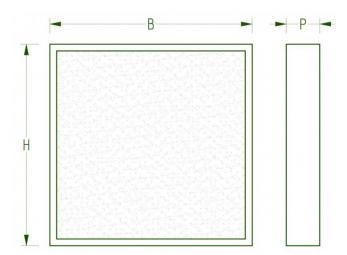
Media Filtrante

Fibra sintetica a densità progressiva.

Applicazioni e Limiti di Impiego

Filtrazione delle particelle solide aerotrasportate nei sistemi di condizionamento civili ed industriali. Viene comunemente impiegato anche come stadio di prefiltrazione di filtri per polveri fini.

Temperatura massima: 80 °C (esercizio continuo). Umidità relativa massima: 90%. Caduta di pressione finale consigliata: 250 Pa


Smaltimento

Il telaio apribile consente di separare il media sintetico dalle parti metalliche. Parzialmente rigenerabile. (CER 15 02 03 / 15 02 02* in funzione dell'uso).

Dimensioni

MCF - MQF

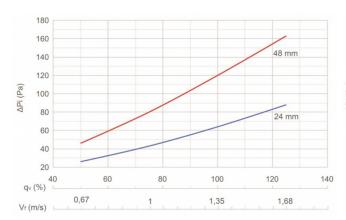
Scelta e Dimensionamento

Tabella selezione rapida

ВхНхР	q _{v nom}	ΔP _{i MCF}	ΔP _{i MQF}	S _f	М
(mm)	(m ³ /h)	(Pa)	(Pa)	(m ²)	(kg)
400x500x24	950	65	75	0.19	0.6
400x625x24	1200	65	75	0.24	0.7
500×500×24	1200	65	75	0.24	0.7
500x625x24	1500	65	75	0.30	0.8
287×592×24	800	65	75	0.17	0.6
490x592x24	1400	65	75	0.28	0.8
592x592x24	1700	65	75	0.34	0.9
400×500×48	950	120	140	0.19	1.1
400x625x48	1200	120	140	0.24	1.2
500×500×48	1200	120	140	0.24	1.2
500x625x48	1500	120	140	0.30	1.4
287×592×48	800	120	140	0.17	0.8
490x592x48	1400	120	140	0.28	1.3
592x592x48	1700	120	140	0.34	1.4

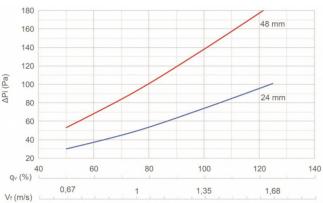
 $q_{v nom} (m^3/h) = portata aria nominale$

 $\Delta P_{i\,MCF}$ (Pa) = caduta di pressione iniziale modello MCF (± 10 Pa) alla portata nominale


 $\Delta P_{i\,MQF}$ (Pa) = caduta di pressione iniziale modello MQF (± 10 Pa) alla portata nominale

 $S_f(m^2) = superficie filtrante$

M(kg) = peso


MCF - caduta di pressione iniziale

 v_f = velocità frontale

 q_v = portata aria nominale

MQF - caduta di pressione iniziale

 v_f = velocità frontale

 q_V = portata aria nominale